If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-76=0
a = 2; b = 16; c = -76;
Δ = b2-4ac
Δ = 162-4·2·(-76)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-12\sqrt{6}}{2*2}=\frac{-16-12\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+12\sqrt{6}}{2*2}=\frac{-16+12\sqrt{6}}{4} $
| 2y+6(y+3)=13 | | 5.8+8(0.2x+3.8)=5.2+7.8x | | −5x^2=−25 | | 190.5=1.5x^2 | | y19-9=3 | | 2x+3=9x+17 | | 2(x+7)+x=5 | | -21/2x+6-41/2x=20 | | 2x=2500 | | -5x/6+11/4=17/3 | | r-10/3+½=-11/6 | | 3(x+1)^2-5=0 | | 3v+19=4 | | 325=r-25 | | 5=h-9 | | 26=4r-2 | | 6-4(3-6m)+12m=2 | | 7.2=18x | | c−4=53 | | m/3+17=20 | | 5p+2=10+3p | | 72+x=83 | | 8x+19)=(9x+9 | | -3=7(y-1.2857) | | 4x-(-2)=-x+8 | | 5+1/4b=11 | | 25-n=10 | | 4x/5+9=8 | | 0x-15=-8x+21 | | 9=m8 | | 2(3x–5)=4x+6 | | 4x+9/5=8 |